Tin Manufacturing

Tin is one of the commonly used corrosion preventive agent for coating purposes. When it gets combined with copper it produces an amalgam called bronze. On the other hand, tin combined with various other metals produces different kinds of amalgam, one of them widely used to prevent teeth corrosion. Malaysia, Bolivia, Indonesia, Thailand, Nigeria, Australia, England are the key producers of this metal in the world.

Tin manufacturing started and was commercialized in 1952 in England. In the tin industrial manufacture process, tin is manufactured on a large scale from the extraction of ore named cassiterite. After completion of mining using a floating dredge, gravel is collected in a tank. This gravel then undergoes a series of filtrations by which tin gets separated out from gravel. Once the filtration process is over the tin undergoes several screening processes through which other elements get removed. Finally, the metal tin gets collected in a water tank and by a downward movement of water it gets collected on the water’s surface. This surface collected tin is then dried chemically. The dried tin still has some unwanted elements, which after being passed through a chemical screening process are removed.

In the end, the tin is heated in a furnace at a temperature of 400 degree Fahrenheit where it gets transformed into slag. This process is known as smelting. At the end of the smelting process this slag gets heated in a furnace to remove impurities present in it. Finally it gets heated again in furnace to remove iron. Once iron gets removed from the tin it still has to undergo one more round of heating and boiling where further impurities are removed. Pure tin comes is now ready to use for commercial purposes.

The tin manufacturing process described above produces around 99.98% pure tin, however there could be a chance of a slight difference of purity from time to time. As an environment friendly metal tin is used as a food container to store food. Metals combined with tin are used for storage purposes around the world. To prevent iron and steel from corrosion tin is widely used.

The use of tin is expected to grow further. Scientists are testing whether to use it in place of mercury, lead and cadmium due to its environment friendly nature without side effects. However it has been observed that the slag from the tin manufacturing process contains many harmful compounds like arsenic and lead. In the electronics industry people have already started using tin-silver solders. Tin is even being used in shotgun shells instead of lead.

Industrial Robots

Invention of Robots has brought about revolutionary changes in the field of industrial manufacturing. In the earlier part of the century humans were engaged in jobs, which were very dangerous and involved serious health hazards, but in 1956, Unimation a company founded by George Devol and Joseph F. Engelberger invented the first robot. These were initially used in industries where it was required that dangers involved in working should be reduced like in spot welding, die casting and forging and then gradually they were employed in areas requiring greater strength and accuracy than human beings.

Industrial Robots are automatic devices, which to an extent simulate the human behavior or more specifically human activity. Robots are important part of the science of Automation. Automation involves machines and computers that are capable of learning and performing various types of operations. The word robot has been derived from the Czech word “robota” meaning compulsory labor. The robots are used in industries to perform various functions like material handling, spot welding, spray painting, die casting, ironing, forging, assembly operations, palletizing, dispensing, testing, water jet cutting, picking and placing heavy goods etc.

Robots are made in various shapes and sizes and generally their load carrying capacity depends up on their size and strength. An average human sized robot is capable of carrying a load of more than 100 pounds and can also move it very quickly at the rate of +/-0.006 inches. One of their major advantages is that they can work continuously for days and years at a stretch without developing any fault. Due to this persistent accuracy robots are fast becoming indispensable part of various industrial set-ups. Most often these robots are used for repetitive painting, welding and operations like picking up and placing products into the machines.

The industrial robots can be programmed for performing a single function at a time and can only perform that particular function till they are reprogrammed. The cost of a robot is not very huge, but generally the cost of programming the robot is so high that instead of reprogramming it the manufacturers find it more economical to buy a new one for a different task. In simpler terms we can say that usually the cost of the robot is just a fraction of the cost of programming it.

Robots are made up of easily available materials. Steel, cast iron and aluminum are commonly used for making the arms and bases of robots. In mobile robots, rubber tires are fixed for smooth and quiet operation. Robots may be electronically operated and also laser or radio controlled. The exposed parts of the robot are enveloped with flexible neoprene sheaths and bellows.

The importance of robots in industries is increasing day by day and they constitute a very important part of the modern industries. Robots have made so many things possible, which could not be even thought of around 6 decades ago. They have taken the place of manual labor, especially in places where people worked in very dangerous and hazardous conditions like welding, die casting and forging. They have brought about revolutionary changes in the field of industrial manufacturing. According to a research conducted by the United Nations Economic Commission for Europe the worldwide purchase for robots is increasing at the rate of approximately 19% every year.

In recent years Robots are also being used in industries like consumer electronics and food packaging where robots outweigh the precision and quality of assembling the products as compared to work done by human hands. Earlier on some people protested the inclusion of robots in industries on the account that this will render many people unemployed. But these fears have also been allayed and the best argument in this regard has been given by economist James Miller. He says “True, the existence of automation might depress workers’ wages but it shouldn’t ever leave them unemployable.”

The Most Authoritative Motor Winding Machine Guide

Introduction

In recent times, there has been a rapid development in the utilization of motor winding machines. As a result of research and development conducted over a long period, these state-of-the-art winding machines were deployed successfully. This is mainly due to the efficiency of energy conversion. In general, these motor winding machines are defined as the wires that are enclosed within coils, typically around with a coated adaptable iron magnetic core, in order to shape magnetic poles while being strengthened by the current [1]. Electric machines come in two basic magnet field pole configurations, named salient pole and non-salient pole. The diagram below illustrates the motor’s windings.

1

                                                                 motor winding

The two-mode pole configuration machine, including salient pole and non-salient pole configuration machines, is utilized for different tasks. The magnetic pole can be generated in the salient pole configuration by exploiting a winding wound approximately underneath the pole face. While in a non-salient pole configuration, the winding can be dispersed within the pole face slots. Additionally, a shaded pole motor involves a winding that is wrapped around the portion of the pole that maintains the magnetic field phase. Also, certain types of motors utilize conductors which is made up of thicker metal, such as sheets of metal, rather than bars made of copper or aluminum. In general, these are programmed with electromagnetic induction.

Types of Winding Machines

There are two types of motor winding which include the following:

  • Stator Winding
  • Rotor Winding

Stator Winding

The stator winding is composed of two identical but distinct three-phase windings wound to the same pole count. Both stators are catered with a uniform frequency [2]. Additionally, these three-phase windings are linked in star or delta configurations which is based on the initiating method.

The star or delta stator enables the motor (which is similar to a squirrel cage) to be frequently on track. Therefore, due to the mutual coupling of the two stator windings, slight unbalances in the supplied voltages cause circulating current. Hence, the stator of the motor can be tied to the delta. Additionally, by including resistance, the slip-ring three-phase induction motor’s stator windings can be linked in star or delta form. Moreover, due to the low resistance to harmonic currents, there is a high level of circulating current when a non-sinusoidal voltage supply is employed, which increases losses and induces the use of wider semiconductor device ratings.

2

                                 Stator Winding (Source: SMT Winding Equipment)

Rotor Winding

In the context of stator winding, rotor winding has a similar shape to the squirrel cage (See figure), which involves conductors that are encased in slots surrounding the laminating iron core. Additionally, the rotor winding is permanently bolted in on itself due to the use of short end rings at the ends of the winding [3]. However, with this design, there is no way to link the rotor to anything outside of the machine. This is one of the relatively simplest and most affordable motors, as it does not require bushes, commutators, or even slip rings, and it has an extended maintenance-free operational life.

3

                                               Rotor Winding (Source: cs.uaf.edu)

The wounding of the armature is referred to as armature winding. The armature winding can be used to convert mechanical energy to electrical energy for generators and electrical energy to mechanical energy for motors. Armature windings are categorized into two types based on the motor winding machines.

  • Lap winding
  • Wave winding

Lap Winding

The only type of armature winding is lap winding. The conductor connection can be made in the same manner as the lanes and poles are linked. Additionally, the last part of each armature coil is connected to the commutator. Inside the winding, the number of brushes is equal to the parallel lines [4]. These are evenly split into positive and negative polarity windings. Furthermore, lap windings are mostly used in high-current and low-power machinery. Also, these windings are grouped into three types, including simplex, duplex, and triplex windings.

Wave Winding

Wave winding is comprised of parallel lanes between two brushed surfaces, such as positive and negative. With some distance, the end part of the primary armature coil can be linked with the beginning part of the next armature coil commutator section [5]. In addition, two parallel lanes in a machine pole can connect the conductors in this sort of winding. The parallel ports can be equal in number to the brushes, which is useful for high-voltage and low current devices.

Advantages of Winding Machines

The adoption of motor winding machine has accelerated the growth and development of the coil processing business. The automated winding machine’s streamlined process results in an increase in efficiency, product quality, and non-conforming products. There are many advantages to employing motor winding machines.

  • In general, the winding is difficult and inefficient for manual work. However, the use of motor winding machines can improve efficiency, reduce labor costs, and also help the industry or business develop faster.
  • Honest Mechatronic Equipment [6] The winding speed, number of times, and duration of the automatic winding machine can all be precisely tuned via the PLC controller.
  • Additionally, the cable is compact and clean, with no diameter deformation.
  • According to various control schemes, it can be wound around a range of different windings in the same machine. Individual labor can accomplish the tasks of many people, which greatly improves the efficiency and lowers the cost of the industry.
  • These coil winding devices are more adaptable and diverse than manual competitors. Additionally, they are simple to install and use, with a low failure rate.
  • After basic training, the workshop personnel can operate, which is more humane.

Businesses in the textile and paper sectors frequently operate with large spools of material on a daily basis. However, how does such a large volume of material end up on a spool in the first place? The answer is a winding machine, which can rapidly wind fabric, paper, string, cord, wire, tape, rope, thread, and wire onto an industrial-size spindle as needed. Given the numerous applications for winding machines, different industries are working on the production of motor winding equipment. Some of them are listed below:

  • Shenzhen Honest Mechatronic Equipment
  • Menzel Elektromotoren
  • York Saw and Knife
  • Tuboly Astronic
  • Acme Mechatronics Inc.
  • Gorman Machine

Conclusion

The advancement of winding machines has shifted the gear towards automation, intelligence, consumer-friendly, and diversification. In addition, the motor winding capabilities have enhanced work productivity and the coil industry’s development. As the industry develops, the demands for winding machines are increasing, and there is also a need to develop more efficient, energy-efficient, and adaptable equipment.

References

[1] Takeuchi, Y., & Hiroshi, O. Development of New Type Wire Winding Machines” Inner Wire Winding Machine” and” Work Rotation Type Wire Winding Machine (Vol. 5, No. 5, p. 17). SANYO DENKI Technical Report 1998.

[2] Ishigami, T., Kitamura, M., & Sanada, K. (2008). Stator-Core Structure and Winding Technology for EPS Motors. IEEJ Transactions on Industry Applications128(12), 1411-1417.

[3] Liu, X., & Zhu, Z. Q. (2014). Stator/rotor pole combinations and winding configurations of variable flux reluctance machines. IEEE Transactions on Industry Applications50(6), 3675-3684.

[4] Ishigami, T., Tanaka, Y., & Homma, H. (2014). Development of Motor Stator with Rectangular‐Wire Lap Winding and an Automatic Process for Its Production. Electrical Engineering in Japan187(4), 51-59.

[5] Zhu, L., Jiang, S. Z., Jiang, J. Z., Zhu, Z. Q., & Chan, C. C. (2010). A new simplex wave winding permanent-magnet brushless DC machine. IEEE Transactions on Magnetics47(1), 252-259.

[6] Shenzhen Honest Mechatronic Equipment. https://en.cnhonest.com.